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Abstract
In this paper, an analysis method of electromagnetic (EM) wave propagation in the troposphere is proposed using the para-
bolic equation (PE) and the actual two-dimensional modified refractivity (M-unit), that is, range and height dependent M-unit. 
Discrete Mixed Fourier Transform (DMFT) based PE method is used, and the validation is conducted using AREPS which is 
developed by the Space and Naval Warfare System Center of US NAVY. The M-units at the National Typhoon Center (NTC) 
in Jeju-island and meteorological station in Heuksan-island, South Korea are calculated using actual meteorological data. 
Then, two-dimensional M-unit is estimated using linear interpolation of M-unit at each position. The path loss between NTC 
and Heuksan-island is analyzed using the three types of M-unit data, Heuksan-island only, NTC only, and linear interpola-
tion. The effect of two-dimensional M-unit on the EM wave propagation when considering long-range problem is discussed.
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1 Introduction

In long-range radio communications or radar systems, it is 
important to accurately compute the propagation of elec-
tromagnetic (EM) waves in the troposphere. In general, the 
EM wave propagation in the troposphere is affected by the 
meteorological and the geographical conditions between 
the transmitting and receiving antennas [1–4]. Especially, 
changes in meteorological conditions in accordance with 
range and height, result in the refractivity variations, and 
thus the EM wave propagation in the troposphere should 
be carefully estimated by taking into account these varia-
tions of refractivity. For these reasons, many studies have 
been conducted to analyze the propagation of EM waves 

using meteorological data for their countries [5–9]. Previ-
ous studies for EM propagation models used the parabolic 
equation (PE) method [10], the finite element method (FEM) 
[11], the finite-difference time-domain (FDTD) [12], and 
the transmission line matrix (TLM) [13]. Among them, the 
PE method has been widely used because it can consider 
variations of refractivity and provides efficient solutions for 
long-range problems [14–17].

However, most previous studies have used the height 
dependent refractivity only, that is, have not considered 
the range dependent refractivity. In this paper, an analysis 
method of the EM wave propagation in the troposphere 
using the PE method, which can consider the two-dimen-
sional modified refractivity (M-unit) according to both range 
and height, is proposed. The proposed analysis method 
employs the PE source code based on Discrete Mixed 
Fourier Transform (DMFT) [18–20]. Then, the Advanced 
Refractive Effects Prediction System (AREPS) developed by 
the Space and Naval Warfare System Center of US NAVY 
[21], is used to verify the accuracy of our PE simulation 
results under the simple flat boundary condition. The M-unit 
data at the transmitting and receiving regions is calculated 
using the meteorological data from the National Typhoon 
Center (NTC) in Jeju-island and meteorological station in 
Heuksan-island, South Korea. The M-units between the 
two regions are estimated using linear interpolation, which 
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results in the two-dimensional M-unit for range and height. 
Three kinds of M-units such as NTC-only, Heuksan-island 
only, linearly interpolated, are used to estimate the path loss 
between NTC and Heuksan-island using the PE. The differ-
ences between the three cases are analyzed and the causes 
of them are discussed.

2  Types of Atmospheric Refraction

The troposphere can be characterized by the refractive index 
n or refractivity N, which is dimensionless as follows [22]:

where P is the atmospheric pressure in millibars, T is the 
Kelvin temperature, and e is the water vapor pressure in 
millibars. The spherical earth can be approximated to a flat 
earth as shown in Fig. 1 by introducing a fictitious medium 
where N is replaced by the modified refractivity M, which 
is dimensionless as follows [10]:

where z is the height above surface given in km and a is the 
effective radius of the earth, i.e. 6,378 km.

Figure 2 shows the atmospheric conditions and direction 
of EM wave propagation. In the case of the standard and 
super refraction, the EM waves are bent to the ground, but 
they do not reach the ground surface because of the curva-
ture of the earth. On the other hand, if the vertical gradient 
is greater than 157 M units/km, the EM waves propagate 
through the atmosphere, not the ground surface, which is 
called sub-refraction. As a special case, the layer with the 
vertical gradient of less than 0 is called the duct layer. In the 
duct layer, the EM waves are bent more to the ground surface 
than the curvature of the earth and propagate as if they are 
trapped in the waveguide.

(1)n = 1 + 77.6 × 10−6
P

T
+ 0.373

e

T2

(2)N = (n − 1) × 106

(3)M = N +
z

a
106

3  Parabolic Equation Method

In the conventional PE method, a large error occurs when 
the elevation angle is more than 15° since the first order Tay-
lor expansion is used to approximate the Helmholtz equa-
tion [10]. In order to reduce the error, the equation is newly 
approximated as shown in (4), and it works without error up 
to about 45° [14, 19, 20].

where u denotes amplitude of the wave component, k0 is 
the wave number in vacuum, x and z are range and height 
respectively. The solution of (4) is given by:

where F indicates the Fourier transform, p = k0sin�(� is the 
propagation angle from the horizontal) is the transform vari-
able, and m = n +

z

a
 is the modified atmospheric refraction 

index. As can be seen from (5), the value u at x is required to 
calculate the next step value u(x + Δx, z). Therefore, to start 
the PE algorithm, we have to know the value at distance 0 m 
for the initial value. To define the initial field, the far field 
pattern of the antenna or the distribution of the aperture is 
required and converted using the Fourier transform as fol-
lows [14]:

where a is the antenna pattern along the height. To consider 
the finite conductivity boundary, we use image theory to 
make the field disappear from the under boundary and the 
condition can be expressed as [14]:

(4)
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u(x + Δx, z) = eik0(m(x,z)−1)Δx × F−1
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(6)f (p) = F[a(z)]

Fig. 1  The spherical and flat earth model

Fig. 2  Types of atmospheric conditions
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The Gaussian antenna beam pattern is often used as the 
initial source for the antenna because it can easily adjust the 
beam width �bw and the elevation angle �elv . The normalized 
Gaussian antenna beam pattern is as follows [14]:

The elevation angle variation of the antenna beam can be 
considered by shifting the Gaussian antenna beam pattern 
from f (p) to f

(
p − k0 sin �elv

)
In order to validate the PE simulation result, the path loss 

was calculated and compared with the AREPS result under 
the same condition. Figure 3 shows distribution of the path 
loss calculated by the PE simulation and AREPS. It can be 
seen that the EM waves are trapped in the duct layer and the 
results of both simulations are matched well with each other 
at height below about 1000 m. Above 1000 m, the result has 
difference since AREPS uses hybrid model [21].

4  Path Loss Estimation Using Actual Data

Figure  4 represents actual geographical data from 0 to 
188.5  km between NTC and Heuksan-island, obtained 
from National Geographic Information Institute [23]. For 
actual M-units along the range and height, two-dimensional 
M-units are achieved through linear interpolation using the 
meteorological data at NTC (0 m in distance) and Heuksan-
island (188.5 km in distance) from the University of Wyo-
ming as shown in Fig. 5 [24]. The atmospheric conditions 
are the surface duct from 0 to about 120 km and are standard 
to the end. The height of the surface duct layer is about 80 m. 
Therefore, the EM waves from NTC will be trapped from 0 
to 80 m in height and will gradually be bent upwards when 
it is under standard conditions.

Figure 6 represents the path loss distribution calculated 
by the PE source code using Heuksan-island only, NTC 
only, and linearly interpolated two-dimensional M-unit. 
When using Heuksan-island data only, the EM waves are 
trapped in the surface duct layer as shown in Fig. 6a. On 
the other hand, if we consider only NTC data which is in 
the standard atmosphere, the EM waves are bent upward as 
shown in Fig. 6b. From the previous two results, we can see 
that calculations using only one side of the data will have 
a large error compared to the actual results. Therefore, the 
range and height dependent M-unit, that is, two-dimensional 
M-unit must be considered. The two-dimensional M-unit 
between NTC and Heuksan-island is calculated by linear 
interpolation of the data in each position, and the simulation 
result using it is shown in Fig. 6c. The path loss distribution 

(7)U(0, p) = f (p)e−ipz − f ∗(−p)eipz

(8)f (p) = exp

[
−p2 ln 2

2k2
0
sin2(�bw∕2)

]

in Fig. 6c, from 0 to 40 km in distance, has standard atmos-
pheric characteristics. This is the correct result compared 
to Fig. 5 in same distance range, and the EM waves in that 
region is bent upward. On the other hand, from 40 km to the 
end in distance, the EM waves are trapped by the duct layer 
up to 120 m. Thus, the path loss is reduced at the end point.

Figure 7 represents three path loss estimation results in 
terms of the distance when the height of the receiver antenna 
is fixed at 50 m. Up to about 50 km in range, all results have 
similar tendency, but the results of three cases are different 
significantly above 50 km. In the case of the NTC only, the 
path loss begins to increase at 100 km in distance due to the 
standard atmosphere. However, since duct layer is considered, 
both results of the linearly interpolation and Heuksan-island 
only have relatively low path loss. This shows how important 

Fig. 3  Validation between the PE simulation and AREPS
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it is to analyze the EM waves propagation considering the two-
dimensional M-unit in the long-range problem. The param-
eters used in the path loss estimation are listed in Table 1.

5  Conclusion

An analysis method of the EM wave propagation in the 
troposphere using the PE method and the two-dimensional 
M-unit is proposed. The PE method is based on DMFT, and 
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Fig. 4  Geographical data for entire region

Fig. 5  M-unit data for entire region

Fig. 6  Path loss distribution calculated by the PE source code

Fig. 7  Path loss estimation along the range



1291Journal of Electrical Engineering & Technology (2020) 15:1287–1292 

1 3

the M-units at the NTC and Heuksan-island in South Korea 
are linearly interpolated for obtaining the two-dimensional 
M-unit according to both range and height. The path loss 
between NTC and Heuksan-island is estimated using three 
M-unit data. Our method can be used to analyze the EM 
wave propagation considering the inhomogeneity of tropo-
sphere with two-dimensional M-unit.
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Table 1  Parameters used in the path loss estimation

Parameter Value

Height 0–1000 m
Range 0–188.5 km
Tx antenna height 600 m
Rx antenna height 50 m
Frequency 1 GHz
Beam width 1°
Elevation angle 0.1672°
Polarization Horizontal
Boundary condition Perfect electri-

cal conduc-
tivity
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